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SUMMARY 

A computer program has been developed to predict laminar source-sink flow in a rotating cylindrical 
cavity. Although the program is based on a standard finite difference technique for recirculating flow, it 
incorporates two novel features. Step changes in grid size are employed to obtain sufficient resolution 
in the boundary layers and special treatment is given to the solution of the pressure correction 
equations, in the ‘SIMPLE’ algorithm, in order to improve the convergence properties of the method. 
Results are presented both for the flow in an infinite rotating cylindrical annulus and a finite rotating 
cylindrical cavity, with the inner cylindrical surface acting as a uniform source and the outer cylinder as 
a sink. These show good agreement with existing analytical solutions and illustrate some of the 
problems associated with the computation of rapidly rotating flows. 
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1. INTRODUCTION 

A problem of interest in gas turbine design is the flow of cooling air between co-rotating 
discs, and in recent years this has been the subject of considerable experimental research 
(see, for example, Reference 1). This paper records the development of a computer program 
for the prediction of such flows. Emphasis is placed on the behaviour of the numerical 
scheme, rather than the flow structure, which will be discussed in a subsequent paper. 

One of the first numerical studies of flow in a rotating cavity was by Pao,’ who considered 
the flow caused by one of the discs being held stationary, while the other surface rotated. 
The highest value of the rotational Reynolds number (Re, = f l b 2 / v )  for which he was able to 
obtain results was 200. Above this, the slow rate of convergence of the iterative solution of 
the finite difference equations made the computation impracticable. Similar difficulties to this 
have since been experienced by several other workers who have used a variety of different 
methods to solve the finite difference equations for laminar flow. For the flow in a cavity 
formed by two rotating discs and a fixed cylindrical shroud, Gosman and Spalding3 obtained 
results for Re, = lo3. Bennetts and Jackson4 obtained solutions for source-sink flow in a 
rotating cavity with Re, = 3.5 x lo3, and Harada’ has produced results for thermally driven 
flow in rotating cavity with Re, = lo3. 

Finite element methods have recently been applied to a variety of different laminar flows 
by Bar-Yoseph, Blech and Solan.6 The main advantage of this method over finite difference 
techniques appears to be its versatility in accounting for different boundary shapes. The 
problem of convergence of the solution at high rotational speeds remains. 
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Since none of the methods used by the workers mentioned above appears to have a 
distinct advantage over the others for the computation of rapidly rotating flow it was 
decided, in the present study, to adapt the readily available ‘TEACH program, developed 
by Gosman and Ideriah,’ €or rotating flow. The finite difference methods used in this 
program have been tested on a wide range of non-rotating flows and were used by Gosman 
et a12 to study turbulent flow between a rotating and a stationary disc. 

In Sections 2 and 3 the standard numerical methods and the modifications that have been 
made to these methods are described. Application of the computer program is then 
illustrated in Sections 4 and 5 and the results are discussed in Section 6. The notation used is 
given in the Appendix. 

2. THE FINITE DIFFERENCE FORMULATION 

2.1. The governing equations 

momentum equations and the continuity equation can be written: 
For laminar flow, with the assumption of axisymmetry and constant viscosity, the three 

(2) 

(3) 

(4) 
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where p‘ is the reduced pressure defined by 

(5 )  p’ = p - ipa2r2 

Here (u, u, w) is the velocity relative to a cylindrical co-ordinate system (r, +, z) rotating at 
angular velocity R. 

The three momentum equations, (1)-(3) can be expressed in terms of a common equation: 

r ar 
i a  
r ar 

where Q> represents one of the three velocity components, u, u or w, and the source term, S,, 
is different for each variable. 

2.2. Finite difference representation on a uniform grid 

Derivation of the finite difference equations for a uniform grid follows the standard 
method described by Patankar and Spalding.’ A staggered finite difference grid is used, as 
shown in Figure 1. The radial and axial velocities are calculated at the points marked f and 
t, respectively, on this diagram. Other variables are calculated at the main grid points. A 
control volume is associated with each grid point and the finite difference equations are 
obtained by integration over the control volumes. 
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Figure 1. Control volumes for @i,i 111 and wi+l,i \\\ 

The finite difference representation of equation (6) at the point P has the form 

CP@P = c CK@K + 6, + S*@d (7) 
K 

where CK represents the summation over the four neighbouring points, N, S, E and W, and 
@ can represent any of the velocity components u, u or w. The coefficients in (7) are of 
standard form and details can be found elsewhere." Hybrid differencing is used for the 
convective terms. 

The continuity equation requires special treatment, as it is used in the iterative solution 
method to obtain improved values of the pressure. It is sufficient to note here that pressure 
correction equations of the form (7) can be derived and solution of these equations ensures 
that mass balances for the control volumes associated with the.main grid points are satisfied. 

2.3. Finite difference representation for a step change in grid spacing 

Provided that constant mesh spacings Sr and Sz are used, the truncation error of the above 
scheme is second order when central differencing is employed, and first order when upwind 
differencing is used. Extension of this method to a non-uniform grid is straightforward but 
care must be taken to ensure that 'correct' values of the variables at the control volume 
boundaries are used, and the truncation error will be first order. Roachel' has discussed the 
problem of introducing a change in mesh size and has shown that unless the spacing is 
changed slowly the formal truncation error of the standard method may actually be 
deteriorated rather than improved. As, for the flows studied here, some kind of variable grid 
was essential, it was decided, considering Roache's observations, to incorporate a step 
change in mesh size in the solution procedure. This avoids some of the complications of a 
gradually variable grid and allows special treatment of the point at which the mesh size 
increases, so that the truncation error will not be inadvertently increased. 

If the factor by which the mesh size is increased or decreased is restricted to be an odd 
integer, a particularly simple method can be used to ensure that the order of the truncation 
error is not reduced at the point where the grid changes. This may be illustrated by 
considering an increase in mesh size in the z direction by a factor of three, as shown in 
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Figure 2. Grid change by factor 3 in the axial direction. The control volumes associated with Qi,;, wi,i-l and 
wi+l,i-2 are shown 

Figure 2. This diagram shows the control volumes that are used to obtain the finite difference 
equations both for a variable on the main grid line and for the axial velocities either side of 
this line. Effectively, the equation for a variable (@i,j say) on the main grid line is calculated 
as though the two points @i-l,i and @i-2, j  (using the notation shown in the diagram), did not 
exist. As a result, the finite difference equation for @i,i has the form 

This differs from the standard form by the inclusion of @i-3 , j  instead of @ i - l , j .  The truncation 
error at this point is of the same order as if a constant mesh of size 362 were used. Equations 
for the axial velocities w ~ , ~  and wi-l,j can be derived in a similar manner, again without 
deterioration in the truncation error. The equation for w ~ , ~  will have the form 

and the equation for wi+l,i has the form 

where the superscript ' has been introduced to show that the coefficients in (9) and (10) are 
not equal. 

This scheme has the advantages that the formal truncation error is not increased and it fits 
in well with the control volume approach. However it should be noted that it does restrict 
the change in grid size to a factor of an odd integer and requires some modification of the 
standard solution procedure. 
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3. SOLUTION OF THE FINITE DIFFERENCE EQUATIONS 

3.1. The standard ‘SIMPLE’ method 

In this well known algorithm the estimates for u, u, w and p are successively updated by 
solution of equations of the form (7). A ‘line-by-line’ (l.b.1.) procedure, which is an AD1 type 
method employing alternate ‘sweeps’ in the axial and radial directions, is used for each 
solution of this equation. 

To ensure that the iterative procedure converges to the solution of the difference 
equations, under-relaxation factors are introduced for each of the four variables. Gosman et 
al.’ also used another form of relaxation. They suggested that the term 

where a is a constant, should be added to the right-hand-side of the radial momentum 
equation. The motivation for this is that there are strong links between the radial and 
azimuthal momentum equations and if u increases, a decrease in u is expected and so the 
centrifugal force term in the radial equation should be reduced. 

The standard criterion, used to determine whether or not the solution had converged is 
based on residuals for each of the four conservation equations. These are calculated from the 
relation 

R = C I(cp - SJQ’~ - c N ~ N  - cS@S - c E ~ E  - CWQW - s,I (12) 

where the summation is carried out over all points P of the finite difference grid. As the 
residuals should be equal to zero for the exact solution the computation is stopped if the 
residuals all fall below some prescribed value. In the present work it was found that a 
suitable cut-off point which gave reasonable convergence for all cases did not lead to 
excessive computing time was difficult to define. In effect the residuals were used as a guide 
to show whether or not the solution was improving and computations were stopped when 
further reduction in the residuals appeared to produce only small changes (relative to some 
typical value) in the velocities and pressure. 

3.2. Treatment of the equations at a step change in the grid 

As the finite difference equations for the nodes at which a change in mesh spacing occurs 
do not fit into the standard form, the l.b.1. solution procedure cannot be applied directly at 
these points. To illustrate how these non-standard equations are incorporated into the 
solution method, consider equation (8), together with the equations for @i-l,j and @i-z,j. In 
the 1.b.l. solution method mentioned earlier, when a sweep is made in the radial direction, 
the values of @ along the axial lines j - 1 and j + 1 are assumed known so that at this stage 
the equations can be written 
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The second of these equations can be used to eliminate @i-2,j from the third which is then 
used to eliminate @i-3,j from the first. The resulting equation is 

“( “ D$’) (14) 
C’ 

C A”A‘ 
( * + g g ) @ i , j = B @ .  .+- c,f( -- c, B”)@i--,,j+D-- D +- 

If this equation is used in place of the original equation for Qi,, the tridiagonal matrix 
algorithm can be used as before. A similar procedure is used for the sweep in the opposite 
direction when there is a change in the radial mesh size. 

3.3. Special treatment of the pressure correction equations 

Owing to the non-linearity and coupling of the governing equations the iterative scheme 
described above does not always converge. The solution may oscillate or diverge, resulting in 
an overflow error on the computer. As mentioned previously, under-relaxation may be used 
to try to obtain convergence. Gosman et aI.* report that the provision of good initial 
estimates and the gradual introduction of high swirl rates also helps to avoid these 
instabilities. Unfortunately no general rule is known for estimating the optimal under- 
relaxation factors or the constant a in equation (11) and, as will be shown in Section 4, the 
method can be very sensitive to this choice. In the present work it was found that instabilities 
could be avoided, and the rate of convergence improved, by ensuring that the pressure 
correction terms, through which the velocities are corrected to ensure that the mass 
conservation equations are satisfied, were calculated to sufficient accuracy. Examples show- 
ing this effect are given in Section 5 .  The modifications to the l.b.1. procedure used to solve 
the pressure correction equations are described below. 

Initially the accuracy of the pressure correction solution was improved simply by making 
more sweeps in the application of the I.b.1. procedure. As this proved expensive in the use of 
computer processing time, the method was modified so that, if the maximum variation in the 
pressure corrections between successive sweeps fell below a prescribed fraction of a rep- 
resentative pressure difference for the cavity, the 1.b.l. method was stopped at that point. 
Subsequently it was found that use of an acceleration procedure could further improve 
convergence rates. A more suitable criterion to stop the iterations was then defined so that a 
mass residual, Rk, was reduced to a prescribed fraction of its starting value. This residual was 
calculated from the relation: 

where the summation is carried out over all points P of the finite difference grid and the 
subscript k refers to  values after k sweeps in each direction. 

The acceleration method used is due to Aitken and is described by Smith.12 An outline of 
the theoretical basis for the method is given here for completeness. To help understanding, it 
is useful to introduce matrix notation. The 1.b.l. solution procedure may then be represented 
by the relation: 

where A and B are constant matrices and ppk denotes the estimate of the pressure correction 
vector after k sweeps in each direction. It follows that: 
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where 

ek PPtrue-PPk 
and pptNe is the true solution for the pressure correction. Assuming that A is of order rn and 
has rn linearly independent eigenvectors V1, V,, . . . , Vm it is possible to find constants 
cl, c2,. . . , c,,, such that 

m 

e, = C c i v i  (19) 

Substituting this expression into (17) and using the fact that AVi = AiVi where Ai is the 
eigenvalue corresponding to Vi gives 

i = l  

Thus, for k >> 1 

where 

m 

ek = c,AFV, 
i = l  

Substituting (18) into equation (21) and eliminating A, gives, after some manipulation, 

for any component pptrue of pptme. In practice, equation (22) is used after a certain number of 
iterations to provide improved values for subsequent iterations. 

Figure 3 shows how the solution of the pressure correction equations can be improved by 
using the acceleration procedure. This particular example was taken from a program run for 
flow in a cylindrical cavity, including end effects, with a radial source and sink at a Reynolds 
number (Re,) of 5 X lo4 and the mass flow parameter (C,) equal to 192. The modulus of the 
maximum eigenvalue of the iteration matrix, as estimated from the slope of the curve for the 
standard algorithm in this figure, is approximately 0.99. As can be seen from equation (21) 
this indicates that the change in the values of the pressure corrections during each iteration 
may be small while the error in the solution is still significant. Although it is clear that use of 
the acceleration procedure considerably improves the rate of convergence, the optimum 
point at which the procedure should be applied will depend on the criterion used to stop the 
iterations. 

4. ONE-DIMENSIONAL SOURCE-SINK FLOW 

An exact analytical solution for flow in an infinite rotating cylindrical annulus with the inner 
cylindrical surface acting as a uniform source and the outer cylinder as a uniform sink has 
been derived by Hide.13 So that numerical results could be compared with this solution the 
boundary conditions in the computer program are taken as 

u = w = O  at r = a , b  Q 
2rrs ’ 

u=- 

au av aw ap 
0 at z = O , s  

az az az az 
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Figure 3. Use of Aitken's acceleration method in the line-by-line solution algorithm: - standard algorithm; 
_ _ _ _ _ _  acceleration procedure applied after 100 double-sweeps; - .  - . - acceleration procedure applied after 150 

double-sweeps 

Program runs were then made for several different rotational speeds and mass flow rates with 
the highest rotational and source Reynolds numbers (Re, = ObZ/v, S = Q/27rvs) being 8170 
and 34, respectively. Good agreement between numerical and analytical solutions was 
obtained. An example of the results is given in Figure 4 which shows a comparison of the 
analytical and numerical predictions for the tangential velocity when Re, = 4085, S = 34. The 
finite difference grid used in these computations gave the results at four equally spaced axial 
positions while, as can be seen from the graph, several different radial grid spacings were 
used. These results show how a change in mesh size can be employed to give a better 
description of the flow in the boundary layer on the sink. 

It was apparent from the computations that, as the rotational speed was increased, so 
convergence of the iterative solution method became more difficult to obtain and more 
computing time was required. To investigate how this problem might be alleviated it was 
decided to test the sensitivity of the method to various parameters. Since it was desirable to 
minimize the computing time used, the analytically trivial case S = O  was chosen for this 
investigation. In this case the solution reduces to 'solid body rotation' (u = u = w = 0) and so 
only a small number of grid points are needed for the numerical solution to give the exact 
result. For the examples described below a 4 x 4 grid was used and the starting values for the 
calculations were for the fluid at rest (u = w = 0, u = -Or). 

Figure 5 shows the effect of varying the under-relaxation factors for the tangential velocity 
and pressure for the case Re, = 5515, S = 0, with all other parameters held constant. These 
graphs give the variation of the tangential velocity at an interior point during the course of 



Figure 4. One-dimensional source-sink flow. Re, = 4085, S = 34. Tangential velocity vs. radial position. Exact 
analytical solution (-). Numerical results: (a) + uniform grid, 3 interior points; (b) IJ non-uniform grid, 6r 
decreased by factor 5 near the sink wall, 7 interior points; (c) x uniform grid, 17 interior points; (d) 0 non-uniform 

grid, Sr decreased by factor 3 near the sink wall, 23 interior points 
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Figure 5.  Effect of under-relaxation factors on the computation of the tangential velocity, at one reference point, 
during solid-body rotation (Re, =5515): (a) the effect of the under-relaxation of u ;  (b) the effect of the 

under-relaxation of p 
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iteration number 

Figure 6. Effect of the number of sweeps on the computation of the tangential velocity, at one reference point, 
during solid-body rotation (Re, = 27,500): - one sweep in each direction; - - - -  three sweeps in each direction 

the calculations. Typically the value would oscillate slowly about the exact solution with the 
amplitude of the oscillations decreasing as the calculation proceeded. Note that an ‘under- 
relaxation’ factor greater than unity corresponds to the use of over-relaxation. The results 
indicate that problems can arise if the factors are either too high or too low. When too high a 
value was used, the solution oscillated wildly and eventually gave rise to arithmetic overflow. 
When too low a value was used, the solution oscillated slowly and appeared to creep towards 
the exact solution. The computation was not carried on long enough to determine whether 
the exact solution would ever be reached. The effect of the factors for axial and radial 
velocities and the parameter a! in equation (11) was not considered, as the starting values for 
u and w already satisfied the required solution. 

In the earlier computations it was noticed that a particularly effective method of procuring 
convergence was to increase the number of sweeps used in the 1.b.l. solution method 
described above. To isolate this effect two program runs were made for Re, = 27,500, S = 0, 
in which the only difference was a variation in this parameter. Figure 6 shows the behaviour 
of tangential velocity at the interior reference point during each run. When just one sweep in 
each direction was employed, the solution had not converged after 400 iterations, but when 
three double-sweeps were allowed an accurate result was achieved in 250 iterations. Note 
also that for the first 140 iterations there is very little difference between the two runs. It is 
only after this stage that the extra sweeps are needed to obtain convergence. 
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5. TWO-DIMENSIONAL SOURCE-SINK FLOW 

In this section numerical results are given for the case of radial outflow of air through a 
rotating cylindrical cavity where the fluid enters the cavity from a central uniform cylindrical 
source and leaves through a uniform sink at the outer radius. Since the flow is symmetric 
about the mid-axial position, the solution domain was restricted to O s z s s / 2 ,  and the 
boundary conditions were set to 

Q 
2ms ' 

u=- u = w = O  at r = a , b  

u = v = w = O  at z = O  (24) 

The following geometrical parameters were used: a = 19 111111, b = 190 mm, S = 50.7 mm. The 
density and viscosity of air were taken as p = 1.225 kg/m3, 

To c o n h  the validity of the numerical results the first case studied was for conditions in 
which Hide's13 analytical solution for this class of flow is expected to be almost exact. The 
rotational Reynolds number was taken as 2.5 X lo4 and the mass flow parameter C,., was set 
at 0.01. Several program runs were made for these conditions using different finite difference 
grids. Some of the results are shown in Figure 7. The effect of grid size is shown in Figure 

= 1-78 X kg/ms. 
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Figure 7. Two-dimensional source-sink flow. Re, = 2.5 X lo4, C, = 0.01, b/a = 10. Numerical results: V non- 
uniform 34 X 46 grid; X non-uniform 22 X 37 grid; + uniform 22 X 37 grid. Hide (Reference 13) - . (a) Axial 
variation of ur at r = 105 mm; (b) radial variation of ur on mid-axial plane; (c) radial variation of ur on mid-axial 

plane; (d) radial variation of wr at z = 4.1 mm 
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7(b), which gives a comparison of the analytical solution for the tangential velocity and the 
computer predictions for three different grids. These results show how changes in grid size at 
each of the three boundary layers can be used to reduce the truncation error without a 
prohibitive increase in the total number of grid points. With a uniform grid having 22 points, 
in the axial direction and 37 points in the radial direction, the truncation error was quite 
large, as can be seen from the graphs. However, when the same number of grid points were 
distributed non-uniformly with the finer mesh size in the boundary layers, the error was 
considerably reduced. To confirm that the numerical solution did converge to the analytical 
solution, a run was made using a non-uniform grid with 34 points in the axial direction, and 
46 in the radial direction. As can be seen from the velocity profiles for this case, excellent 
agreement was obtained. The slightly thicker boundary layer on the source given by the 
numerical results in Figures 7(b) and 7fc) could well be due to curvature effects which were 
neglected in Hide’s solution. As the analytical approach also neglects the no slip condition on 
the axial velocity at r = a and b some difference is to be expected close to these walls. 

As for the one-dimensional flows described above, increasing the number of sweeps in the 
1.b.l. algorithm tended to improve the convergence rate for the solution. Further tests 
showed that this improvement was brought about by  the more accurate solution of the 
pressure correction terms and that there was no benefit in increasing the number of sweeps 
made for the other variables. Thus the program was modified to allow only one double- 
sweep in the calculations for u, z1 and w but, as described in Section 3.3, give special 
treatment to the pressure corrections. 

The effect of using different criteria for terminating the 1.b.l. solution for the pressure 
terms was investigated for the case Re, = 5 X lo4, C, = 192, and some results from this study 
are shown in Table I. The starting values for these program runs correspond to solid body 
rotation at twice the rotational speed of the disc, the under-relaxation factors for the four 
variables were set at 0.5 and the constant (Y was set to zero. A non-uniform grid was used 
with 32 and 46 points in axial and radial directions. The degree of convergence obtained 
after SO iterations in each case can be judged from the relative values of residuals for the 
three momentum equations and the continuity equation. For case 1, in which 100 double- 
sweeps were used for each calculation of the pressure corrections, the values of the residuals 
were found to have increased from the initial values and so it is unlikely that convergence 
will be obtained. The results for cases 2 and 3 show that convergence may be obtained by 
simply increasing the number of sweeps allowed. In case 4, the maximum number of 
double-sweeps used was 200, but the l.b.1. procedure was also stopped if the maximum 
change in the pressure correction terms during the last iteration was less than 0.05 per cent 
of the radial pressure difference across the cavity. Comparison of the results with case 2 
shows that use of this criterion gives a considerable reduction in the computing time used, 
while the effect on convergence is small. For cases 5 and 6, the I.b.1. procedure was stopped 
when the mass residual was reduced to 5 per cent of its initial value or when SO0 
double-sweeps had been made. In case 6, Aitken’s acceleration method was used after every 
hundred double-sweeps. The results indicate that the reduction of the residual to a certain 
percentage of its initial value is a reasonable criterion to use in the solution of the pressure 
correction equations. It would appear that Aitken’s acceleration method not only gives a 
considerable saving in computing time but also results in better overall convergence. After 
further numerical experiments for various types of flow it was found that a single application 
of the acceleration method after a set number of double-sweeps (typically 200), with the 
termination of the procedure when either the residual was reduced to 5 per cent of its initial 
value or the number of sweeps reached a maximum value (typically 250), was the most useful 
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Table I. Effect of different methods of applying the line-by-line (1.b.l.) method to the solution of the 
pressure correction terms 

~ ~ 

Normalized residuals after 50 iterations 
*CPU time 

Criteria for stopping 1.b.l. solution Axial Radial Tangential (s)  for 50 
Case No. of pressure corrections momentum momentum momentum Mass iterations 

1 100 double-sweeps allowed 1-67x1O4 1-O6x1O4 1-85 276 204 

2 200 double-sweeps allowed 2.69 2.50 2.21 0.56 397 

3 300 double-sweeps allowed 1.69 1.72 2.70 1.24 594 

4 (a) 200 double-sweeps allowed 2.85 2.60 2.25 0.56 204 
(b) iterations stopped if maximum 

change in pressure correction 
during an iteration <0.05 per cent 
of the pressure difference across 
cavity 

5 (a) 500 double-sweeps allowed 1.37 1.74 2.22 1.15 325 
(b) iterations stopped if mass 

residual <5 per cent initial value 

method used after every 100 double- 
sweeps 

6 As case 5,  but Aitken’s acceleration 1 1 1 1 150 

* The computer used was a CDC7600. 

procedure. The application of Aitken’s acceleration method was observed not only to 
improve the pressure correction solution during one iteration but in some cases reduce the 
number of sweeps required to solve for those terms during the subsequent iterations. 

The problem of obtaining convergence at high rotational speeds was further investigated 
for the case Re, = 2.5 X lo5, C, = 605. For these conditions it was found that, although the 
solution did appear to be converging as the computation advanced, the rate of convergence 
was unacceptably slow. A number of parameters were varied to try and speed up con- 
vergence. These include the under-relaxation factors, the constant a, and the number of 
double-sweeps allowed in the line-by-line procedure. However none of these measures 
produced the desired result and so it was concluded that it was impracticable to obtain full 
convergence. However, to try to identify the cause of these difficulties, streamline plots for 
the solution at various stages of the computation were produced. The stream function ($), 
which is defined so that 

was obtained by integrating the solutions for the velocities. Streamline plots were then 
obtained using a standard contour plotting package. A sequence of four of these plots is 
shown in Figure 8. These results show that the main errors in the solution are within the 
‘source region’. The overall flow structure is in good agreement with that expected from the 
numerical studies at lower rotational speeds which will be described in a separate paper. This 
suggests that it may be possible to obtain useful information from the numerical results, 
even when convergence cannot be obtained over the whole field of flow. It is interesting to note 
that the variation of the solution as the iterations proceed is similar to the unstable flow 



680 J. W. CHEW 

Figure 8. Radial outflow with radial inlet, Re, = 2.5 x lo5, C,  = 605. Streamline pattern in the half cavity s / 2 s z  5 s  
at different stages of the solution. Iterations completed: (a) 1100; (b) 1300; (c) 1500; (d) 1700 
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observed by Owen and Pincombel during vortex breakdown within the source layer. Such 
time-dependent-like behaviour is not surprising, as a strong analogy exists between the 
iterative solution of the steady state equations and the transient problem (see, for example, 
Reference 1 1 ). 

The amount of computing time used in the calculations varied considerably for different 
cases and was strongly dependent on the choice of the different input parameters controlling 
convergence. For the case Re, = 2.5 x lo4, Cw = 0.01, convergence was obtained after about 
20 minutes of CPU time on a CDC7600 machine. However results for other cases at the 
same rotational speed, but different flow rates, have been obtained in about half this time. 
This improvement is attributed to differences in the treatment of the pressure correction 
terms. For the calculations described here the program required about 70K of core store. 

6. CONCLUSIONS 

The numerical experiments described above illustrate some of the problems associated with 
the computation of rapidly rotating flows. Similar difficulties have been encountered by many 
other workers. The slow convergence of the numerical solution appears to be associated with 
instabilities in the physical flows. Just as a small physical disturbance in an experiment may 
propagate, so a small error in the numerical solution can lead to other errors. In the present 
work the Reynolds number limit for which solutions could be obtained was increased by 
special treatment of the pressure correction terms in the SIMPLE algorithm. The examples 
considered show that rotation can lead to particularly slow convergence in the solution of the 
pressure correction equations and, unless these equations are solved to sufficient accuracy, 
the errors will persist through subsequent iterations, slowing down the convergence rate or 
even producing divergence. It is interesting to  note that Patankar14 and Issa” have suggested 
modifications to  the SIMPLE algorithm involving the pressure correction terms for non- 
rotating flows. Although their treatment is different from that used here there may be some 
link between these approaches. 

The numerical results also demonstrate that a step change in mesh spacing can be 
successfully incorporated in the standard solution method. Using step changes in the grid to 
obtain sufficient resolution in the boundary layers, results have been obtained for two- 
dimensional sourcesink flow in a rotating annulus at an order of magnitude higher Reynolds 
number than any previously published work for a similar type of flow. 
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APPENDIX: NOMENCLATURE 

a inlet radius 
A iteration matrix in the line-by-line solution procedure 
b outer radius of cavity 
B constant matrix in the line-by-line solution procedure 
cN, cs, cE, cw coefficients in the finite difference equations 
CW mass flow parameter = k/ps 
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PP 
PP 
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P’ 
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Xi 
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Subscripts 

i, i 
k 
N, s, E, w 
new 
old 
P 
true 

J. W. CHEW 

error in the pressure correction vector = pptme - ppk 
mass flow rate 
static pressure 
reduced pressure = p - fpQ2r2  
pressure correction 
vector of pressure correction terms 
volumetric flow rate 
radial distance 
rotational Reynolds number = b2Qlv 
axial distance between the discs 
source Reynolds number = Q/2nvs 
source term in the governing equations 
source terms in the finite difference equations 
radial, tangential and axial velocity components in a cylindrical co-ordinate 
system (r,  4, z )  rotating at angular speed Q 
eigenvector of matrix A 
axial distance 
constant controlling relaxation of the centrifugal force terms in the numerical 
solution 
radial and axial grid spacings 
eigenvalue of the matrix A 
eigenvalue of A with largest absolute value 
dynamic viscosity 
kinematic viscosity = p / p  
density 
angular co-ordinate 
main variable in general form of the finite difference equations 
axisyrnmetric stream function 
angular velocity of cavity 

integers defining the position of a point on the finite difference grid 
iteration number 
pertaining to the four points immediately neighbouring P 
value after the current iteration 
value after the previous iteration 
a general point on the finite difference grid 
the exact solution 
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